Warning: Use of undefined constant wp_cumulus_widget - assumed 'wp_cumulus_widget' (this will throw an Error in a future version of PHP) in /var/www/poil.dk/public_html/s/wp-content/plugins/wp-cumulus/wp-cumulus.php on line 375

Warning: session_start() [function.session-start]: Cannot start session when headers already sent in /var/www/poil.dk/public_html/s/wp-content/plugins/enhanced-wordpress-contactform/wp-contactform.php on line 276
Article: Fast network oscillations in vitro exhibit a slow decay of temporal auto-correlations – Simon-Shlomo Poil

Poil, S.-S., Jansen, R., van Aerde, K., Timmerman, J., Brussaard, A. B., Mansvelder, H. D. and Linkenkaer-Hansen, K. (2011), Fast network oscillations in vitro exhibit a slow decay of temporal auto-correlations. European Journal of Neuroscience, 33: no. doi: 10.1111/j.1460-9568.2011.07748.x


Ongoing neuronal oscillations in vivo exhibit non-random amplitude fluctuations as reflected in a slow decay of temporal auto-correlations that persist for tens of seconds. Interestingly, the decay of auto-correlations is altered in several brain-related disorders, including epilepsy, depression and Alzheimer’s disease, suggesting that the temporal structure of oscillations depends on intact neuronal networks in the brain. Whether structured amplitude modulation occurs only in the intact brain or whether isolated neuronal networks can also give rise to amplitude modulation with a slow decay is not known. Here, we examined the temporal structure of cholinergic fast network oscillations in acute hippocampal slices. For the first time, we show that a slow decay of temporal correlations can emerge from synchronized activity in isolated hippocampal networks from mice, and is maximal at intermediate concentrations of the cholinergic agonist carbachol. Using zolpidem, a positive allosteric modulator of GABAA receptor function, we found that increased inhibition leads to longer oscillation bursts and more persistent temporal correlations. In addition, we asked if these findings were unique for mouse hippocampus, and we therefore analysed cholinergic fast network oscillations in rat prefrontal cortex slices. We observed significant temporal correlations, which were similar in strength to those found in mouse hippocampus and human cortex. Taken together, our data indicate that fast network oscillations with temporal correlations can be induced in isolated networks in vitro in different species and brain areas, and therefore may serve as model systems to investigate how altered temporal correlations in disease may be rescued with pharmacology.

Citations : 4

Hardstone et al., Detrended fluctuation analysis: A scale-free view on neuronal oscillations, Frontiers in Fractal Physiology, in press

Gonzalez et al., External Drive to Inhibitory Cells Induces Alternating Episodes of High- and Low-Amplitude Oscillations, PLoS Comput Biol 8(8): e1002666. doi:10.1371/journal.pcbi.1002666 (2012)

Poil et al, Critical-State dynamics of avalanches and oscillations jointly emerge from balanced excitation/inhibition in neuronal networks. J Neurosci. 32(29):9817-9823 (2012)

Jansen et al, 2011, Novel Candidate Genes Associated with Hippocampal Oscillations, PLoS ONE,

Article: Fast network oscillations in vitro exhibit a slow decay of temporal auto-correlations